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Abstract
A model for the Hall coefficient is developed within the framework of the
Zubarev formalism and linear response theory. Comparison is made with the
relaxation time approximation. Further results are given including electron–
electron interactions within linear response theory.

PACS numbers: 52.25.Fi, 52.25.Xz, 05.70.Ln

1. Introduction

Properties of noble gas plasmas in magnetic fields have recently been investigated by Shilkin
et al [1–3] using shock wave generated plasmas. Data were obtained for both the DC
electrical conductivity and the Hall coefficient. In the case of no magnetic field, results for
the conductivity and other thermoelectric properties are well understood from linear response
theory (LRT) within the Zubarev formalism [4–6]. Previous attempts at describing the Hall
effect within the Zubarev approach have yielded overly complex results [7], which thus far
remain uncalculated. On the other hand, the widely used relaxation time approximation (RTA)
to transport based on the Boltzmann kinetic equation, see for example [8], provides a simple
approach and has been successful in describing magnetic field effects in metallic systems as
well as in Lorentz plasmas. In this paper, we derive an expression for the Hall coefficient
using the Zubarev approach, which leads to identical results as the RTA in the low density
limit when considering small magnetic fields. We then go beyond the RTA description by
including the electron–electron (e–e) interactions within LRT in addition to the electron–ion
(e–i) interactions considered in the RTA.

2. Linear response theory

For a non-equilibrium system, we consider a specific set of so-called relevant observables
which characterize the non-equilibrium properties of the system, see [9]. The choice of
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observables must reflect the system in question and is crucial to finding a convenient and
effective description of that system. When considering a plasma in an electric field �E, particle
motion is clearly important. In the additional presence of a magnetic field �B, we find that it

is most suitable to use a set of generalized velocities { �̇Rn} as the relevant observables and not
the generalized momenta { �P n} as used in previous works describing the conductivity [4, 5].
Generalized velocities are defined via a generalized centre of mass �Rn and the generalized
momenta are given by a summation over wave vectors:

�̂Rn = i
∑
kk′

(βεk)
n ∂

∂�k′ δ(
�k − �k′)â†

k′ âk,

�̂P n =
∑

k

h̄�k(βεk)
nâ

†
kâk,

(1)

where εk is the electron kinetic energy and β = (kBT )−1. Note that the subscript n in �Rn

and �P n refers to the power of energy in these relevant observables. We take time derivatives
using Ẋ = (ih̄)−1[X, Ĥ], where the Hamiltonian Ĥ contains the equilibrium Hamiltonian Ĥ0

as well as contributions due to all external perturbations:

Ĥ = Ĥ0 + Ĥext,

Ĥ0 =
∑

k

εkâ
†
kâk +

∑
c

V ec,

Ĥext = e �E · �̂R0 +
e

2me

�B · ( �̂R0 × �̂P 0),

(2)

where V ec is the interaction potential between an electron and species c of the plasma. Taking
then the time derivatives of the generalized centres of mass we find the generalized velocities
and forces:

me
�̇Rn = �P n +

e

2
( �B × �Rn),

me
�̈Rn = �Fn − e[ �E + ( �̇Rn × �B)],

(3)

where we define a generalized force due to internal interactions by �Fn = i
h̄

∑
c[V ec, �P n]. We

use these observables under a maximum entropy condition to create a relevant non-equilibrium
statistical operator (NESO):

�̂rel = 1

Zrel
exp

(
−β

(
Ĥ0 − µeN̂e +

∑
n

φn

˙̂�Rn

))
,

Zrel = Tr

{
exp

(
−β

(
Ĥ0 − µeN̂e +

∑
n

φn

˙̂�Rn

))}
,

(4)

where N̂e is the electron number operator and µe is the electron chemical potential. The

generalized velocities �̇Rn are accompanied by Lagrange multipliers φn. For the formation of
the averages of relevant observables, we then require that

〈 �̇Rn〉 = Tr{�̂rel
˙̂�Rn}. (5)

We create the complete NESO �̂ and remove time reversibility by solving a modified quantum
Liouville equation containing an infinitesimally small source term:

∂�̂

∂t
+

i

h̄
[Ĥ, �̂] = − lim

ε→0
ε(�̂ − �̂rel). (6)
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We then linearize �̂ with respect to the set { �̇Rn} and external perturbations and use the self-
consistency condition (5) to determine the Lagrange multipliers. We compare the statistical
and phenomenological descriptions of the electric current density �j to find the conductivity σ

and the Hall coefficient RH :

〈 �j 〉 = − e

	0
〈 �̇R0〉 = σ �E + σRH( �j × �B). (7)

The average of the current density can be given in terms of the equilibrium correlation
functions:

Nnm = 1

me

( �P n; �P m), Anm = 1

me

〈 �P n; �P m〉, dnm = 〈 �Fn; �Fm〉, (8)

where we define the equilibrium correlation functions of operators X and Y by

(X;Y ) = 1

β
Tr

{
�̂0

∫ β

0
dτX(−ih̄τ )Y

}
,

〈X;Y 〉 = lim
ε→0

∫ 0

−∞
dt e(ε−iω)t (X(t);Y ),

(9)

with ω being the frequency of the external field, which we set to zero in this work, and �̂0

being the equilibrium statistical operator:

�̂0 = 1

Z0
e−β(Ĥ0−µeN̂e), Z0 = Tr{e−β(Ĥ0−µeN̂e)}. (10)

3. Results in the low density limit

Using the same notation as given in [8], we find for small magnetic field and arbitrary density
the following expressions for the conductivity and the Hall coefficient:

σ = e2K01, RH = − 1

eme

K02

K2
01

, (11)

K01 = − β

	|D|
∣∣∣∣ 0 N0

N̄0 D

∣∣∣∣ , K02 = − β

	|D|
∣∣∣∣ 0 N0

Ā0 D

∣∣∣∣ , (12)

where N0, N̄0 and Ā0 are vectors defined by Ni = (Ni0Ni1, . . . , NiL), N̄ i = (N0iN1i , . . . ,

NLi)
T and Āi = (Ai0Ai1, . . . , AiL)T , and D is an (L + 1) × (L + 1) matrix with elements dnm.

In the low density limit, we compare dimensionless parameters, the reduced conductivity σ ∗

and the Hall factor rH :

σ ∗ =
√

meβ
3/2

e2

(
e2

4πε0

)2

σ ≡ f

ln 

,

rH ≡ −eneRH ,

(13)

where ln 
 is the Coulomb logarithm. Low density limits of the correlation functions Nnm

and dnm are given in [4]. Anm must be solved for by partial integration and can be written in a
determinant expression:

Anm = − me

|D|
∣∣∣∣ 0 Nn

N̄m D

∣∣∣∣ . (14)

Taking progressively larger sets { �̇Rn}, we can show that when considering only e–i interactions,
we obtain convergence to the known RTA results [8]. Inclusion of e–e interactions gives
convergence to the Spitzer [10] result for the conductivity and we also obtain a smaller result
for the Hall coefficient, see table 1. While e–e interactions reduce the conductivity by about
42%, the Hall coefficient is lowered by about 38%.
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Table 1. Convergence of the LRT approach with progressively larger sets { �̇Rn} according to (11)
compared with the RTA [8] and the Spitzer [10] results. Conductivity results as found in [4, 5].

f rH

{Rn} ei ei + ee ei ei + ee

0 0.2992 0.2992 1 1
0, 1 0.9724 0.5781 1.5325 1.2586
0, 1, 2 1.0145 0.5834 1.9786 1.2068
0, 1, 2, 3 1.0157 0.5875 1.9343 1.2077
0, 1, 2, 3, 4 1.0158 0.5892 1.9333 1.2036
0, 1, . . . , 10 1.0159 – 1.9328 –

RTA 1.0159 – 1.9328 –
Spitzer 1.0159 0.5908 – –

4. Summary

We have shown that LRT gives results consistent with other well-known approaches to electron
transport. Moreover, LRT provides a very general description of transport capable of including
interactions within a plasma in a consistent manner. Other transport coefficients such as the
thermopower and the Lorentz number can also be described within LRT. Future work will
extend this description to cover arbitrary densities and magnetic field strengths. Experimental
temperature and pressure regions are known to produce partially ionized plasmas, therefore we
must also consider electron–atom interactions. In principle, accurate descriptions of transport
coefficients allow the determination of the charge carrier concentration, and therefore the
ionization degree within a partially ionized plasma. This is of fundamental interest for plasma
diagnostics and the development of plasma equations of state.
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